
Writing Commits for
You,
Your Friends,
and Your Future Self
Victoria Dye

Who am I?

Name - Victoria Dye (@vdye)

Occupation - Software Developer

Company - GitHub

Where I contribute - Git

I. Context
II. Writing Good Commits

III. Performing Commit-by-Commit Reviews
IV. Utilizing the Commit History

I. Context
II. Writing Good Commits

III. Performing Commit-by-Commit Reviews
IV. Utilizing the Commit History

What is a commit (and why should I care)?

[Commits] are snapshots of your entire repository at
specific times…based around logical units of change.

Over time, commits should tell a story of the
history of your repository and how it came to be

the way that it currently is.[1]

[1] https://github.com/git-guides/git-commit (2022 Mar 10)

https://github.com/git-guides/git-commit

Number of commits in git[1] - 66,016

Lines of text (code, documentation) in the repository - 1,412,339

Word count of non-merge commit messages - 3,292,050

Word count of War and Peace (English translation)[2] - 562,493

[1] As of 715d08a9e5 (The eighth batch, 2022-02-25)
[2] https://www.gutenberg.org/files/2600/2600-h/2600-h.htm (last accessed: Mar 18, 2022)

https://www.gutenberg.org/files/2600/2600-h/2600-h.htm

What do you mean by “you, your friends, and
your future self”?

You
…you (in the present)

Your Friends
reviewers,

co-contributors
Your Future Self
someone reading your

code in the future

Writing good commits for…

You

➢ “This is a huge project, where do I start?”

Your friends

➢ “How do I review this?”

Your future self

➢ “What was this code supposed to do?”

I. Context
II. Writing Good Commits

III. Performing Commit-by-Commit Reviews
IV. Debugging with the Commit History

Guidelines for writing good commits

1. Outline your changes as a narrative structure

2. Break your changes into small, atomic increments

3. Use the commit message to explain “what” and “why”

Guidelines for writing good commits

1. Outline your changes as a narrative structure

2. Break your changes into small, atomic increments

3. Use the commit message to explain “what” and “why”

You

I’ll just hack at login &
logout functions until I get
something to compile…

It’s working locally! Now
to add tests so I don’t get
dinged on my review…

I’ll just hack at login &
logout functions until I get
something to compile…

You

It’s working locally! Now
to add tests so I don’t get
dinged on my review…

I’ll just hack at login &
logout functions until I get
something to compile…

You

But it works on my
machine!! *sigh*

It’s working locally! Now
to add tests so I don’t get
dinged on my review…

I’ll just hack at login &
logout functions until I get
something to compile…

You

Why didn’t I see that
before! That should fix it.

But it works on my
machine!! *sigh*

It’s working locally! Now
to add tests so I don’t get
dinged on my review…

I’ll just hack at login &
logout functions until I get
something to compile…

You

Why didn’t I see that
before! That should fix it.

But it works on my
machine!! *sigh*

It’s working locally! Now
to add tests so I don’t get
dinged on my review…

I’ll just hack at login &
logout functions until I get
something to compile…

I fixed everything
mentioned in the review,

time to merge!You

Your Reviewer

Half of the functions
called here aren’t

implemented. Maybe they
show up later?

Your Reviewer

I think this function was
called in the first commit?
I’ll just assume it’s called

correctly.

Half of the functions
called here aren’t

implemented. Maybe they
show up later?

Your Reviewer

This is a ton of tests, but I
guess that makes sense
given login/logout is such

a core functionality.

I think this function was
called in the first commit?
I’ll just assume it’s called

correctly.

Half of the functions
called here aren’t

implemented. Maybe they
show up later?

Your Reviewer

I’ll just skip these. CI
passes now, so one of
these fixes must work.

This is a ton of tests, but I
guess that makes sense
given login/logout is such

a core functionality.

I think this function was
called in the first commit?
I’ll just assume it’s called

correctly.

Half of the functions
called here aren’t

implemented. Maybe they
show up later?

Your Reviewer

I’ll just skip these. CI
passes now, so one of
these fixes must work.

This is a ton of tests, but I
guess that makes sense
given login/logout is such

a core functionality.

I think this function was
called in the first commit?
I’ll just assume it’s called

correctly.

Half of the functions
called here aren’t

implemented. Maybe they
show up later?

There’s a lot of stuff
updated here. I’ll skip this
and assume this matches

the review feedback?

Narrative structure

“Good narrative structure is about presenting the plot
and story elements to allow readers to understand

what is happening and what it all means.”[1]

[1] https://blog.reedsy.com/guide/story-structure/ (last accessed: Mar 14, 2022)

https://blog.reedsy.com/guide/story-structure/

Narrative structure

No one-size-fits-all

DO
Create an outline, include it in the
PR description or “cover letter”

Stay on-topic

DON’T
Put partial or independent
changes together in a commit

“Correct” a commit in a later
commit

Most importantly, tell your story

Guidelines for writing good commits

1. Outline your changes as a narrative structure

2. Break your changes into small, atomic increments

3. Use the commit message to explain “what” and “why”

Outline
1. Setup

a. Fix CI bug
2. Implement feature

a. Implement login
b. Implement logout

3. Test
4. Document

build.yml | 5 +++--
1 file changed, 3 insertions(+), 2 deletions(-)

src/common.code | 81 ++--
src/login.code | 574 ++++++++++++++++++++++++++++
src/users.code | 126 ++++++
test/login.test | 362 ++++++++++++++++++
new-site.build | 22 +-
5 files changed, 1146 insertions(+), 19 deletions(-)

src/common.code | 135 ++++++--
src/logout.code | 126 ++++++
test/logout.test | 362 ++++++++++++++++++
3 files changed, 609 insertions(+), 14 deletions(-)

test/common.code | 57 +++++++++++
test/pictures.test | 39 +++++++-
test/polls.test | 28 ++++--
test/text-posts.test | 45 ++++++---
test/videos.test | 17 ++-
5 files changed, 164 insertions(+), 22 deletions(-)

docs/login-logout.md | 229 ++++++++++++
1 file changed, 229 insertions(+)

build.yml | 5 +++--
1 file changed, 3 insertions(+), 2 deletions(-)

src/common.code | 81 ++--
src/login.code | 574 ++++++++++++++++++++++++++++
src/users.code | 126 ++++++
test/login.test | 362 ++++++++++++++++++
new-site.build | 22 +-
5 files changed, 1146 insertions(+), 19 deletions(-)

src/common.code | 135 ++++++--
src/logout.code | 126 ++++++
test/logout.test | 362 ++++++++++++++++++
3 files changed, 609 insertions(+), 14 deletions(-)

test/common.code | 57 +++++++++++
test/pictures.test | 39 +++++++-
test/polls.test | 28 ++++--
test/text-posts.test | 45 ++++++---
test/videos.test | 17 ++-
5 files changed, 164 insertions(+), 22 deletions(-)

docs/login-logout.md | 229 ++++++++++++
1 file changed, 229 insertions(+)

build.yml | 5 +++--
1 file changed, 3 insertions(+), 2 deletions(-)

src/common.code | 81 ++--
src/login.code | 574 ++++++++++++++++++++++++++++
src/users.code | 126 ++++++
test/login.test | 362 ++++++++++++++++++
new-site.build | 22 +-
5 files changed, 1146 insertions(+), 19 deletions(-)

src/common.code | 135 ++++++--
src/logout.code | 126 ++++++
test/logout.test | 362 ++++++++++++++++++
3 files changed, 609 insertions(+), 14 deletions(-)

test/common.code | 57 +++++++++++
test/pictures.test | 39 +++++++-
test/polls.test | 28 ++++--
test/text-posts.test | 45 ++++++---
test/videos.test | 17 ++-
5 files changed, 164 insertions(+), 22 deletions(-)

docs/login-logout.md | 229 ++++++++++++
1 file changed, 229 insertions(+)

src/common.code | 81 ++--
src/login.code | 574 ++++++++++++++++++++++++++++
src/users.code | 126 ++++++
test/login.test | 362 ++++++++++++++++++
new-site.build | 22 +-
5 files changed, 1146 insertions(+), 19 deletions(-)

Atomic

Every commit is an independent unit

The repo is stable after every commit

Each commit does one thing

Change stack has minimal depth

Small

+ int get_user(UUID user_id)
+ {
+ ...
+ }

+ int login(uuid)
+ {
+ ...
+ exists = get_user(uuid);
+ ...
+ }

Commit A

Commit B

Guidelines for writing good commits

1. Outline your changes as a narrative structure

2. Break your changes into small, atomic increments

3. Use the commit message to explain “what” and “why”

commit <SHA>
Author: Jeff Hostetler <jeffhost@microsoft.com>
Date: Mon Oct 4 22:29:03 2021 +0000

 t/perf/perf-lib.sh: remove test_times.* at the end test_perf_()

 Teach test_perf_() to remove the temporary test_times.* files
 at the end of each test.

 test_perf_() runs a particular GIT_PERF_REPEAT_COUNT times and
creates
 ./test_times.[123...]. It then uses a perl script to find the
minimum
 over "./test_times.*" (note the wildcard) and writes that time to
 "test-results/<testname>.<testnumber>.result".

 If the repeat count is changed during the pXXXX test script, stale
 test_times.* files (from previous steps) may be included in the min()
 computation. For example:

 ...
 GIT_PERF_REPEAT_COUNT=3 \
 test_perf "status" "
 git status
 "

 GIT_PERF_REPEAT_COUNT=1 \
 test_perf "checkout other" "
 git checkout other
 "
 ...

 The time reported in the summary for "XXXX.2 checkout other" would
 be "min(checkout[1], status[2], status[3])".

 We prevent that error by removing the test_times.* files at the end
of
 each test.

commit <SHA>
Author: Victoria Dye <vdye@github.com>
Date: Fri Dec 17 10:26:59 2021 -0500

 Make error text more helpful

What

High-level intent of the commit (what
does this accomplish?)

Explanation of the implementation
(what did you do to accomplish your
goal?)

Why

Context for your implementation
(why does the code do what it does
now?)

Justification for the change (why is
this change being made?)

commit <SHA>
Author: Jeff Hostetler <jeffhost@microsoft.com>
Date: Mon Oct 4 22:29:03 2021 +0000

 t/perf/perf-lib.sh: remove test_times.* at the end test_perf_()

 Teach test_perf_() to remove the temporary test_times.* files
 at the end of each test.

 test_perf_() runs a particular GIT_PERF_REPEAT_COUNT times and
creates
 ./test_times.[123...]. It then uses a perl script to find the
minimum
 over "./test_times.*" (note the wildcard) and writes that time to
 "test-results/<testname>.<testnumber>.result".

 If the repeat count is changed during the pXXXX test script, stale
 test_times.* files (from previous steps) may be included in the min()
 computation. For example:

 ...
 GIT_PERF_REPEAT_COUNT=3 \
 test_perf "status" "
 git status
 "

 GIT_PERF_REPEAT_COUNT=1 \
 test_perf "checkout other" "
 git checkout other
 "
 ...

 The time reported in the summary for "XXXX.2 checkout other" would
 be "min(checkout[1], status[2], status[3])".

 We prevent that error by removing the test_times.* files at the end
of
 each test.

Implementation

Intent

Context

Justification

What

High-level intent of the commit (what
does this accomplish?)

Explanation of the implementation
(what did you do to accomplish your
goal?)

Why

Justification for the change (why is
this needed?)

Context for your implementation
(why is it implemented this way?)

Most commits only (lightly) cover these

commit <SHA>
Author: Victoria Dye <vdye@github.com>
Date: Fri Dec 17 10:26:59 2021 -0500

 Make error text more helpful Intent

commit <SHA>
Author: Victoria Dye <vdye@github.com>
Date: Fri Dec 17 10:26:59 2021 -0500

 Make error text more helpful Intent

$./git-portable.sh invalid-command
Not a valid command: invalid-command

$./gitportable.sh
Not a valid command:

$./git-portable.sh invalid-command
Not a valid command: invalid-command

$./gitportable.sh
Please specify a command

What it’s actually doing

commit <SHA>
Author: Victoria Dye <vdye@github.com>
Date: Fri Dec 17 10:26:59 2021 -0500

 git-portable.sh: make error text more helpful

 When provided with incorrect argument, return a message more indicative of
 the cause of the error.

 If a user did not provide an argument to ‘git-portable.sh’, the error
 message returned would be:

 $./git-portable.sh
 Not a valid command:

 This does not clearly indicate that the problem is that ‘git-portable.sh’
 must be called with a subcommand (e.g., ./git-portable.sh install).

 To guide the user towards the correct usage, instead print “Please specify a
 command” when no subcommand is specified. Implementation

Intent

Context

Justification

commit <SHA>
Author: Victoria Dye <vdye@github.com>
Date: Fri Dec 17 10:26:59 2021 -0500

 git-portable.sh: make error text more helpful

 The message “Not a valid command: <invalid command>” is
 intended to notify the user that their subcommand is invalid.
 However, when no subcommand is given, the "empty" subcommand
 results in the same message: "Not a valid command:". This does
 not clearly guide the user to the correct behavior, so print
 "Please specify a command" when no subcommand is specified. Implementation

Intent

Context

Justification

Recap: guidelines for writing good commits

1. Outline your changes as a narrative structure

→ Takeway: guides you & your reviewer through changes

2. Break your changes into small, atomic increments

→ Takeaway: makes review as efficient as possible

3. Use the commit message to explain “what” and “why”

→ Takeaway: lets readers understand the code how you do

But how do I actually do this?

git commit --amend
git commit --fixup <target>

git rebase -i --keep-base <main>
git reset <target>

Re-committing from scratch? Adjusting what you have?

git reset <target>

Re-committing from scratch?

● The commits are “undone”.
● Your files don’t change!

git commit --amend
git commit --fixup <target>

git rebase -i --keep-base <main>

Adjusting what you have?
● commit --amend - reword and

add changes to your latest
commit

● commit --fixup - create a
commit with a special message
that, when rebased, combines
with the target (“squashes”)

● rebase -i - reorder, reword,
drop, squash, etc. a list of
commits

git commit --amend
git commit --fixup <target>

git rebase -i --keep-base <main>
git reset <target>

Re-committing from scratch? Adjusting what you have?

I. Context
II. Writing Good Commits

III. Performing Commit-by-Commit Reviews
IV. Utilizing the Commit History

Reviewing commit-by-commit

Bugfixes

Tests

Refactor

Reviewing commit-by-commit
commit <SHA>
Author: Victoria Dye <vdye@github.com>
Date: Fri Jan 28 10:50:27 2022 -0500

 sparse-index: prevent repo root from becoming sparse

 Prevent the repository root from being collapsed into a sparse directory by
 treating an empty path as "inside the sparse-checkout". When collapsing a
 sparse index (e.g. in 'git sparse-checkout reapply'), the root directory
 typically could not become a sparse directory due to the presence of in-cone
 root-level files and directories. However, if no such in-cone files or
 directories were present, there was no explicit check signaling that the
 "repository root path" (an empty string, in the case of
 'convert_to_sparse(...)') was in-cone, and a sparse directory index entry
 would be created from the repository root directory.

 The documentation in Documentation/git-sparse-checkout.txt explicitly states
 that the files in the root directory are expected to be in-cone for a
 cone-mode sparse-checkout. Collapsing the root into a sparse directory entry
 violates that assumption, as sparse directory entries are expected to be
 that the files in the root directory are expected to be in-cone for a
 cone-mode sparse-checkout. Collapsing the root into a sparse directory entry
 violates that assumption, as sparse directory entries are expected to be
 outside the sparse cone and have SKIP_WORKTREE enabled. This invalid state
 in turn causes issues with commands that interact with the index, e.g.
 'git status'.

 Treating an empty (root) path as in-cone prevents the creation of a root
 sparse directory in 'convert_to_sparse(...)'. Because the repository root is
 otherwise never compared with sparse patterns (in both cone-mode and
 non-cone sparse-checkouts), the new check does not cause additional changes
 to how sparse patterns are applied.

Intent
Implementation

Context

Justification

Reviewing commit-by-commit

Implementation
Prevent the repository root
from being collapsed into a
sparse directory by treating
an empty path as "inside the
sparse-checkout".

diff --git a/dir.c b/dir.c
index d91295f2bc..a136377eb4 100644
--- a/dir.c
+++ b/dir.c
@@ -1463,10 +1463,11 @@ static int path_in_sparse_checkout_1(const char
*path,
 const char *end, *slash;

 /*
- * We default to accepting a path if there are no patterns or
- * they are of the wrong type.
+ * We default to accepting a path if the path is empty, there are no
+ * patterns, or the patterns are of the wrong type.
 */
- if (init_sparse_checkout_patterns(istate) ||
+ if (!*path ||
+ init_sparse_checkout_patterns(istate) ||

 (require_cone_mode &&
 !istate->sparse_checkout_patterns->use_cone_patterns))

return 1;

I. Context
II. Writing Good Commits

III. Performing Commit-by-Commit Reviews
IV. Utilizing the Commit History

git bisect

Narrow down the source of a bug to a specific commit

Last good
deployment

Failed
deployment

The bug

git bisect start <bad> <good>

Working?

Working?

git bisect good

Working?

Working?

git bisect bad

Working?

Working?

git bisect bad

🎉 Found the bug! 🎉

…but why did it happen
in the first place?

git blame

Find out which commit last changed a
line of code

Search commits by file, change
location, and/or message

git log

$ git blame -s my-file.py
abd52642da46 my-file.py 1) import os
603ab927a0dd oldname.py 3) import re
603ab927a0dd oldname.py 4)
603ab927a0dd oldname.py 5) print(“Hello world”)
abd52642da46 my-file.py 5) print(os.stat(“README”))
...

$ git log --oneline -- my-file.py
abd52642da46 my-file.py: add README stat printout
7392d7dbb9ae my-file.py: rename from oldname.py
603ab927a0dd oldname.py: create printout script
...

$ git log --oneline
09823ba09de1 README.md: update maintainer contact
abd52642da46 my-file.py: add README stat printout
7392d7dbb9ae my-file.py: rename from oldname.py
5ad823d1bc48 test.py: commonize test setup
603ab927a0dd oldname.py: create printout script
...

I. 🎉 Context 🎉
II. ✨ Writing Good Commits ✨

III. 🎊 Performing Commit-by-Commit Reviews 🎊
IV. 🥳 Utilizing the Commit History 🥳

Remember these things!

Git commits contextualize your code for a broader audience.

You can improve the quality of your commits today by organizing a narrative,
making changes small & atomic, and explaining “what” & “why”.

Spending time on writing high-quality commits is helpful for anyone and
everyone involved in your open- or closed-source project.

Questions?

Download these slides: https://vdye.github.io/2022/OS101-Writing-Commits.pdf

https://vdye.github.io/2022/OS101-Writing-Commits.pdf

